Task- and Network-level Schedule Co-Synthesis of Ethernet-based Time-triggered Systems

Licong Zhang1, Dip Goswami2, Reinhard Schneider1, Samarjit Chakraborty1
1Institute for Real-Time Computer Systems, TU Munich, Germany
2Electrical Engineering Department, TU Eindhoven, Netherlands

ASP-DAC 2014
Jan. 21, 2014
Overview

- **Problem**
 - Ethernet-based time-triggered system
 - Co-synthesis of task and communication schedule
 - Application-level (multi-)objectives
Overview

- **Problem**
 - Ethernet-based time-triggered system
 - Co-synthesis of task and communication schedule
 - Application-level (multi-)objectives

- **Approach**
 - Formulation of the problem in Mixed Integer Programming model
 - System description, constraints and objectives formulation

Configurations
- applications
- tasks
- communication
- network topology
- device performance

Objectives
- timing requirements
- timing objectives

MIP model
- system description
- constraints formulation
- objectives formulation

Synthesized schedules
- task schedules
- communication schedules
- results of objectives

MIP Solver

21.01.2014, ASP-DAC
Licong Zhang/ RCS,TUM
Outline

- Motivation
- Ethernet-based Time-triggered System
- Constraints Formulation
- Multi-objective Optimization
- Experimental Results
- Concluding Remarks
Motivation

- Ethernet in safety-critical domain
 - Safety-critical domains: avionics, automotive, industrial automation
 - Increased complexity and load on communication
 - Conventional buses reaching limits (e.g. CAN, FlexRay in automotive)
 - Progress in Ethernet offers better determinism and QoS
Motivation

- **Ethernet in safety-critical domain**
 - Safety-critical domains: avionics, automotive, industrial automation
 - Increased complexity and load on communication
 - Conventional buses reaching limits (e.g. CAN, FlexRay in automotive)
 - Progress in Ethernet offers better determinism and QoS

- **Need for performance guarantees**
 - Safety-critical applications (e.g. vehicle/plane dynamics control)
 - Need for ultra-low latency, jitter and determinism
Motivation

- **Ethernet in safety-critical domain**
 - Safety-critical domains: avionics, automotive, industrial automation
 - Increased complexity and load on communication
 - Conventional buses reaching limits (e.g. CAN, FlexRay in automotive)
 - Progress in Ethernet offers better determinism and QoS

- **Need for performance guarantees**
 - Safety-critical applications (e.g. vehicle/plane dynamics control)
 - Need for ultra-low latency, jitter and determinism

- **Time-triggered systems**
 - Offer determinism
 - Schedules can be synthesized to minimize latency
Motivation

- Task- and communication-level schedule co-synthesis
 - Application-level timing more important (e.g. feedback control loop)
 - Schedules of tasks and communication must be synchronized
 - Separate task or communication schedule synthesis
 -> not leading to optimal application-level timing properties
Motivation

- **Task- and communication-level schedule co-synthesis**
 - Application-level timing more important (e.g. feedback control loop)
 - Schedules of tasks and communication must be synchronized
 - Separate task or communication schedule synthesis
 -> not leading to optimal application-level timing properties

- **Related work**
 - On general time-triggered architecture [6]
 - Schedule synthesis of FlexRay-based time-triggered system [7,8,9]
 - Communication schedule synthesis of time-triggered Ethernet [10,11,12,13]
Motivation

- Task- and communication-level schedule co-synthesis
 - Application-level timing more important (e.g. feedback control loop)
 - Schedules of tasks and communication must be synchronized
 - Separate task or communication schedule synthesis
 -> not leading to optimal application-level timing properties

- Related work
 - On general time-triggered architecture [6]
 - Schedule synthesis of FlexRay-based time-triggered system [7,8,9]
 - Communication schedule synthesis of time-triggered Ethernet [10,11,12,13]

- Contributions
 - Task and communication schedule co-synthesis in Ethernet-based time-triggered system (problem formulation in Mixed Integer Programming)
 - Multi-objective optimization according to application-level objectives
Time-triggered Distributed System

- **Distributed system**
 - Task partition and mapping onto different processing units
 - Data sent through a network (e.g. CAN, Ethernet)
 - Application-level timing -> interplay between tasks and communication

\[a \]

application
Distributed System

- Distributed system
 - Task partition and mapping onto different processing units
 - Data sent through a network (e.g. CAN, Ethernet)
 - Application-level timing -> interplay between tasks and communication

[Diagram showing task partition and communication]
Time-triggered Distributed System

- **Distributed system**
 - Task partition and mapping onto different processing units
 - Data sent through a network (e.g. CAN, Ethernet)
 - Application-level timing -> interplay between tasks and communication
Time-triggered Distributed System

- **Distributed system**
 - Task partition and mapping onto different processing units
 - Data sent through a network (e.g. CAN, Ethernet)
 - Application-level timing -> interplay between tasks and communication

- **Time-triggered non-preemptive task scheduling**
 - Pre-defined static schedule / a task can not be preempted (e.g. eCos)

- **Time-triggered communication scheduling**
 - Pre-defined static schedule for message transmission (e.g. FlexRay static seg., TTP)
Switched Ethernet

- Processing units connected through switches
- Commonly with full-duplex links
- Ethernet frames forwarded switch by switch
Time-triggered Ethernet Communication

- **Switched Ethernet**
 - Processing units connected through switches
 - Commonly with full-duplex links
 - Ethernet frames forwarded switch by switch

- **Network latency**
 - Propagation delay (negligible)
 - Transmission delay
 - Switch delay
Time-triggered Ethernet Communication

- **Switched Ethernet**
 - Processing units connected through switches
 - Commonly with full-duplex links
 - Ethernet frames forwarded switch by switch

- **Network latency**
 - Propagation delay (negligible)
 - Transmission delay
 - Switch delay
 - Processing delay
 - Queuing delay
 - not deterministic
 - can be relatively large
Time-triggered Ethernet Communication

- **Time-triggered Ethernet communication**
 - Frames are scheduled to avoid queuing delay
 - Frames are not queued at the output port
 - Frame transmission on each link according to static schedule
Time-triggered Ethernet communication

- Frames are scheduled to avoid queuing delay
- Frames are not queued at the output port
- Frame transmission on each link according to static schedule
Time-triggered Ethernet Communication

- **Time-triggered Ethernet communication**
 - Frames are scheduled to avoid queuing delay
 - Frames are not queued at the output port
 - Frame transmission on each link according to static schedule
- **Time-triggered Ethernet communication**
 - Frames are scheduled to avoid queuing delay
 - Frames are not queued at the output port
 - Frame transmission on each link according to static schedule

Diagram:

- **End Station (Processing Unit)**
- **Switch**

Links:
- Link 1 (1->5)
- Link 2 (2->5)
- Link 2 (5->2)
- Link 3 (5->6)
- Link 4 (6->3)
- Link 5 (6->4)

Transmission Time Schedule

Licong Zhang/ RCS,TUM
Time-triggered Ethernet Communication

- **Time-triggered Ethernet communication**
 - Frames are scheduled to avoid queuing delay
 - Frames are not queued at the output port
 - Frame transmission on each link according to static schedule

```
End Station (Processing Unit)  Switch

Link 1 (1->5)  Link 2 (2->5)  Link 3 (5->6)  Link 4 (6->3)  Link 5 (6->4)
```

Transmission Time Schedule
- **Time-triggered Ethernet communication**
 - Frames are scheduled to avoid queuing delay
 - Frames are not queued at the output port
 - Frame transmission on each link according to static schedule

- **Ethernet-based protocols with time-triggered traffic**
 - Profinet IRT [1]
 - Time-triggered traffic in TT Ethernet [3]
 - IEEE802.1Qbv (not yet released) [5]
Problem Formulation

- **Topology** \(G(\mathcal{V}, \mathcal{E}) \)

 \(v_i \in \mathcal{V} \) → *processing units or switches*

 \(l_{m,n} \in \mathcal{E} \) → *Ethernet links*
Problem Formulation

- **Topology** $G(V, E)$

 $v_i \in V \quad \rightarrow \quad \text{processing units or switches}$

 $l_{m,n} \in E \quad \rightarrow \quad \text{Ethernet links}$

- **Application task** τ

 $\tau_i = \{\tau_i.p, \tau_i.o, \tau_i.e\}$

 $\downarrow \quad \downarrow \quad \downarrow$

 period, offset, WCET
Problem Formulation

- **Topology** \(G(\mathcal{V}, \mathcal{E}) \)

 - \(\mathcal{V} \) processing units or switches
 - \(\mathcal{E} \) Ethernet links

- **Application task** \(\mathcal{T} \)

 \[\tau_i = \{ \tau_i.p, \tau_i.o, \tau_i.e \} \]

 period, offset, WCET

- **Communication task** \(\mathcal{C} \)

 \[c_i = \{ f_i, c_i.tr, c_i.o, c_i.p \} \]

 frame, path tree, offsets, period
Problem Formulation

- **Topology** $G(\mathcal{V}, \mathcal{E})$
 - $v_i \in \mathcal{V}$ → processing units or switches
 - $l_{m,n} \in \mathcal{E}$ → Ethernet links

- **Application task** τ
 - $\tau_i = \{\tau_i.p, \tau_i.o, \tau_i.e\}$
 - period, offset, WCET

- **Communication task** c
 - $c_i = \{f_i, c_i.tr, c_i.o, c_i.p\}$
 - frame, path tree, offsets, period

path ← $c_i.ph_j$
from sender to one receiver

path tree ← $c_i.tr = \{c_i.ph_1, c_i.ph_2, \ldots\}$
all paths in a communication task
Problem Formulation

- Application \mathcal{A}

$$a_i = \{a_i.tc, a_i.p, a_i.rt, a_i.lz\}$$

task chain, period

response time, latency

21.01.2014, ASP-DAC
Licong Zhang/ RCS,TUM
Problem Formulation

- **Application** A

 $a_i = \{ a_i.tc, \quad a_i.p, \quad a_i.rt, \quad a_i.lz \}$

 - **task chain**: all application and communication tasks in temporal order
 - **response time**: time from period begin to the end of last task in task chain
 - **end-to-end latency**: time from begin of first task to the end of last task in task chain
Problem Formulation

- **Application** \mathcal{A}

 \[a_i = \{ a_i.tc, a_i.p, a_i.rt, a_i.lz \} \]

 task chain, period

 response time, latency

- **Schedule co-synthesis problem**

 To co-synthesize

 - task schedules $\{ \tau_i.o \}$
 - communication schedules $\{ c_i.o \}$

 according to **application-level objectives**

 (e.g. end-to-end latency, response time)
Mixed Integer Programming (MIP)

- Mixed Integer (Linear) Programming:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b \\
& \quad lb \leq x \leq ub \\
& \quad \text{some variables in } x \text{ must take integer values}
\end{align*}
\]

- Model formulation
 - Formulate system constraints of the co-synthesis problem into a MIP problem
Constraints

- **(C1) Collision-free application tasks**
 - no overlap between execution of two instances of tasks

\[
\begin{align*}
\tau_i.p \times k_i + \tau_i.o + \tau_i.e &< \tau_j.p \times k_j + \tau_j.o \\
\text{or} \\
\tau_j.p \times k_j + \tau_j.o + \tau_j.e &< \tau_i.p \times k_i + \tau_i.o
\end{align*}
\]

| \begin{tabular}{c}
end of τ_j \\
k_i, k_j \\
\end{tabular} | \begin{tabular}{c}
begin of τ_i \\
enumerate instances if periods are not equal
\end{tabular} |

\[PU\] \[PU\]
Constraints

- **(C1) Collision-free application tasks**
 - no overlap between execution of two instances of tasks
 \[
 \tau_i.p \times k_i + \tau_i.o + \tau_i.e < \tau_j.p \times k_j + \tau_j.o
 \]
 or
 \[
 \tau_j.p \times k_j + \tau_j.o + \tau_j.e < \tau_i.p \times k_i + \tau_i.o
 \]

 - begin of \(\tau_i\) or enumerate instances if periods are not equal

 - end of \(\tau_j\)

- **(C2) Collision-free communication tasks**
 - no overlap between transmission of two frames
 \[
 c_i.p \times k_i + c_i.o^{l,m,n} + f_i.fl/bw + i \text{f\ g} < c_j.p \times k_j + c_j.o^{l,m,n}
 \]
 or
 \[
 c_j.p \times k_j + c_j.o^{l,m,n} + f_j.fl/bw + i \text{f\ g} < c_i.p \times k_i + c_i.o^{l,m,n}
 \]

 - end of \(f_j\)
 - Inter-frame gap
 - begin of \(f_i\)
(C3) Path dependency
- Communication schedules
 -> correct temporal order in the path

\[c_i.o[ph_i, q-1] + f_i.f_l/bw + pd + sync < c_i.o[ph_j, q] \]

schedule on one link schedule on the following link
Constraints

- **(C3) Path dependency**
 - Communication schedules
 -> correct temporal order in the path
 \[
 c_i.o[ph_i, q - 1] + f_i.fl/bw + pd + sync < c_i.o[ph_j, q]
 \]
 schedule on one link schedule on the following link

- **(C4) Data dependency**
 - task and communication schedules
 -> correct temporal order in task chain
 if \(\tau_i \) followed by \(\tau_j \)
 \[
 \tau_i.o + \tau_i.e < \tau_j.o
 \]
 if \(\tau_i \) followed by \(c_j \)
 \[
 \tau_i.o + \tau_i.e + sd < c_j.o[\text{first}]
 \]
 if \(c_i \) followed by \(\tau_j \)
 \[
 c_i.o[\text{last}] + f_i.fl/bw + sync + rd < \tau_j.o
 \]
Constraints

- **(C5) Application response time**
 - Response time < upper bound

\[a_i.rt < a_i.rt_{max} \]
Constraints

- **(C5) Application response time**
 - Response time < upper bound

 \[a_i \cdot rt < a_i \cdot rt_{max} \]

- **(C6) Application end-to-end latency**
 - End-to-end latency < upper bound

 \[a_i \cdot lz < a_i \cdot lz_{max} \]
Multi-Objective Optimization

- **Application-level objectives**
 - Response time
 - Applications that need to be finished as soon as possible in a period
 - E.g. platform/system states, data/state integrity checks

For a set of applications \(\mathcal{A}(\text{obj}) \), \(\forall i, a_i \in \mathcal{A}(\text{obj}) \):

- Max. response time: \(\text{obj} = \max(a_i.rt) \)
- AVG. response time: \(\text{obj} = \frac{\sum a_i.rt}{N} \)
Multi-Objective Optimization

- **Application-level objectives**
 - **Response time**
 -> Applications that need to be finished as soon as possible in a period
 -> E.g. platform/system states, data/state integrity checks
 \[
 \text{Max. response time: } \ obj = \max(a_i.rt) \\
 \text{AVG. response time: } \ obj = \frac{\sum a_i.rt}{N}
 \]
 - **End-to-end latency**
 -> Applications that need to have a low latency
 -> E.g. feedback control loops
 \[
 \text{Max. latency: } \ obj = \max(a_i.lz) \\
 \text{AVG. latency: } \ obj = \frac{\sum a_i.lz}{N}
 \]
Multi-Objective Optimization

- **Application-level objectives**
 - **Response time**
 -> Applications that need to be finished as soon as possible in a period
 -> E.g. platform/system states, data/state integrity checks

 \[
 \text{Max. response time: } \ obj = \max(a_i \cdot rt) \\
 \text{AVG. response time: } \ obj = \frac{\sum a_i \cdot rt}{N}
 \]

- **End-to-end latency**
 -> Applications that need to have a low latency
 -> E.g. feedback control loops

 \[
 \text{Max. latency: } \ obj = \max(a_i \cdot lz) \\
 \text{AVG. latency: } \ obj = \frac{\sum a_i \cdot lz}{N}
 \]

- **Multi-objective optimization**
 - Optimize according to several objectives

 \[
 \text{For all objectives } \{\text{obj}_i\} \\
 \text{obj}_M = \sum \text{obj}_i \times \omega_i
 \]
MIP Model Formulation/Solving

- **Constraints and objective formulation MIP**
 - Simple inequity constraints:
 -> straight forward constraint formulation
 - Either-or constraints (e.g. collision free constraints):
 -> introduce a binary decision variable and formulate the constraint with two inequities [15]
 - Mini-max objective (e.g. max. latency of N applications):
 -> introduce a continuous variable in the objective function and N inequities in the constraints [15]

- **Solving the MIP models**
 - Commercial or non-commercial solvers (e.g. Gurobi, Cplex)
Case Study

- **System description**
 - 30 applications: a_1 to a_{30}, 53 application tasks, 23 communication tasks (frames)
 - Harmonic periods – {4,5,10,20} ms, various WCETs and frame lengths

- **Network topologies**
 - 12 processing units
 - 4 topologies
Case Study

- **System description**
 - 30 applications: a_1 to a_{30}, 53 application tasks, 23 communication tasks (frames)
 - Harmonic periods – {4,5,10,20} ms, various WCETs and frame lengths

- **Network topologies**
 - 12 processing units
 - 4 topologies

- **Optimization Objectives**

 \[
 \begin{align*}
 obj_1 & \quad \text{max. response time of } a_1 \text{ to } a_{30} \\
 obj_2 & \quad \text{max. response time of } a_1 \text{ to } a_5 \\
 obj_3 & \quad \text{max. response time of } a_1 \text{ to } a_{10} \\
 obj_4 & \quad \text{avg. response time of } a_1 \text{ to } a_{30} \\
 obj_5 & \quad \text{max. end-to-end latency of } a_1 \text{ to } a_{30}
 \end{align*}
 \]
Experimental Results

- Comparison of different single-objective optimizations in tree topology
Experimental Results

- Experimental Results
 - Comparison of different single-objective optimizations in tree topology
Experimental Results

- Experimental Results
 - Comparison of different multi-objective optimizations in tree topology

multi-objective case

\[obj_1, obj_2, obj_3 \]
Experimental Results

- Comparison of different multi-objective optimizations in tree topology

multi-objective case

\[obj_1, obj_2, obj_3 \]

multi-objective case

\[obj_1, obj_4, obj_5 \]
Experimental Results

- Influence of weight in multi-objective optimization

\[\text{multi-objective case with different weight ratio for } \text{obj}_1, \text{obj}_4 \]

\[\text{obj}_M = \text{obj}_1 \times \omega_1 + \text{obj}_4 \times \omega_4 \]
Computational Cost/ Scalability

- **Scalability analysis**
 - Synthetic test configurations from size of 9 applications to 90 applications
 - Setup: 1.87GHz dual core CPU, 4 GB memory, MATLAB 2010 with Gurobi 5.10
Concluding Remarks

- **Approach**
 - Schedule co-synthesis problem for Ethernet-based time-triggered system
 - Formulation of constraints in such a system
 - Multi-objective optimization
Concluding Remarks

- **Approach**
 - Schedule co-synthesis problem for Ethernet-based time-triggered system
 - Formulation of constraints in such a system
 - Multi-objective optimization

- Co-synthesis of task and communication schedules according to application-level objectives
- Independent of task and communication configuration, network topologies and device performance
Concluding Remarks

- **Approach**
 - Schedule co-synthesis problem for Ethernet-based time-triggered system
 - Formulation of constraints in such a system
 - Multi-objective optimization

 - Co-synthesis of task and communication schedules according to application-level objectives
 - Independent of task and communication configuration, network topologies and device performance

- **Outlook**
 - Extensibility and sustainability of synthesized schedules
 - Local sub-optimal searches for plug-in schedules
 - Schedule synthesis according to function-level properties
References

[16] “www.gurobi.com”
Many thanks

Q/A